

수변전설비

🤼 출제 Point

이해하기

전류와 관련된 계측기 및 보호 계 전기는 CT 2차측에 설치하며, 전 압과 관련된 계측기 및 보호계전 기는 PT 2차측에 설치한다.

수변전설비 주요기기

수변전설비에서 수전설비란 수전점에서 변압기 1차측까지 기기구성, 변전설비란 변압기 에서 전력부하설비의 배전반까지를 변전설비라 한다. 즉, 전력회사의 전력공급에 대해 구 내에 전력을 수전하고, 변전하는 설비를 시설하여 구내에만 배전하고 구외로 전송하지 않는 설비를 말한다. 한편, 수변전 전기설비 계획의 기본원칙은 건축물의 사용목적에 적 합하고, 안전하며, 신뢰도 높은 경제적 설비로서 장래 확장계획을 고려한다.

1 수변전설비의 기능

- (1) 기기의 운전, 정지, 개폐의 상태를 표시하고 이상 발생시 경보기능
- (2) 기기운전을 수동·자동 변환시키면서 운전, 이상발생시 제어기능
- (3) 부하 또는 기기의 계기상태를 파악하고 측정하는 계측기능
- (4) 측정값을 자동기록하며, 데이터를 집계하여 사용량을 기록

2 수변전설비의 주요기기

명 칭	약호	심벌	기능 및 용도		
전류계	A	A	부하에 흐르는 전류를 측정하는 기기		
전류계용 절환 개폐기	AS	\bigcirc	1대의 전류계로 3상 전류를 측정하기 위하여 사용하는 개폐기		
변류기	CT	*	대전류를 소전류로 변환하여 계측기 및 계전기 에 전원공급		
전압계	V	V	부하에 걸리는 전압을 측정하는 기기		
전압계용 절환 개폐기	VS	\oplus	1대의 전압계로 3상 전압을 측정하기 위하여 사용하는 개폐기		
계기 용 변압기	PT	-}}	고전압을 저전압으로 변성하여 계측기 및 계전 기에 전원공급		

명 칭	약호	심벌	기능 및 용도		
전력 수급용 계기용변성기	MOF	MOF	PT와 CT를 함께 내장한 것으로 전력량계에 전 원공급		
단로기	DS		무부하시 보수·점검 등을 위해 선로 개폐		
차단기	СВ	•	고장전류 차단 및 부하전류의 개폐		
트립 코일	TC		사고시에 전류가 흘러서 차단기를 동작		
유입개폐기	OS	•	부하전류를 개폐		
피뢰기	LA		이상 전압 내습시 대지로 방전시키고 그 속류 를 차단		
지락 계전기	GR	G R	지락사고시 트립코일을 여자시킴		
영상 변류기	ZCT		지락 사고시 영상 전류를 검출하여 지락 계전 기를 작동시킴		
과전류 계전기	OCR	OC	과부하나 단락시에 트립코일을 여자시킴		
컷아웃 스위치	COS		기계 기구를 과전류로부터 보호		
전력 퓨즈	PF		단락전류 차단		
전력용 콘덴서	SC	#	역률 개선		
직렬 리액터	SR	-3335-	제5고조파 제거하여 파형개선		
케이블 헤드	СН		가공전선과 케이블 단말 접속		
분로리액터	Sh.R		페란티 현상 방지		

아기하기

수변전 설계시 고려사항

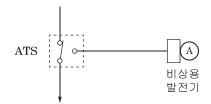
- 사용목적에 적합할 것
- 기기의 성능이 우수할 것
- 신뢰도가 높은 설비일 것
- 정비·보수가 간편할 것
- 에너지절약 및 부하 증가에 대 한 확장계획을 고려할 것

이해하기

COS와 PF의 심벌은 같은 것을 사 용한다.

콘덴서 부속설비

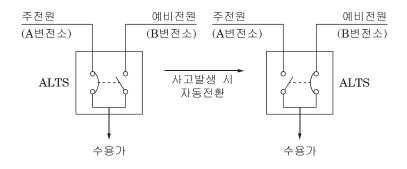
- 직렬리액터
- : 제5고조파 제거
- 방전코일(DC)
- : 잔류전하 방전


출제 Point

수변전설비 주요개폐기

1 자동 절체 개폐기(ATS: Automatic Transfer Switch)

갑작스러운 부하측 고장으로 주차단기가 트립되거나 돌발적인 정전으로 전원 공급이 어려울 때 비상 발전기 선로에 절체되어 전원공급을 가능하게 한다.


암기하기

부하개폐기(LBS)

수변전 설비의 인입구 개폐기로 사용되며 부하전류를 개폐할 수 있으나 고장전류를 차단할 수 없 으므로 한류퓨즈와 직렬로 사용 한다. 래치를 트립시키는 방식을 사용하므로 3상을 동시에 개로하 여 결상을 방지한다.

조 기자 보다 전환 개폐기(ALTS : Automatic Load Transfer Switch)

중요시설 정전시에 큰 피해가 예상되는 수용가에 이중전원을 확보하여 주 전원이 정전될 경우 예비전원으로 자동으로 전환되어 무정전 전원공급을 수행하는 3회로 2스위치의 개폐기이다.

암기하기

기중형 자동고장구분개폐기

AISS는 수전설비의 인입구에 설치 하여 과부하 또는 고장전류 발생시 고장구간을 자동으로 개방하여 사 고를 방지하며 전 부하 상태에서 자동 또는 수동으로 개방하여 과부 하로부터 보호한다.

3 자동고장 구분 개폐기(ASS: Automatic Section Switch)

공급 신뢰도 향상과 다른 수용가에 대한 정전을 방지하기 위하여 고장 구간만 을 신속, 정확하게 차단하여 고장의 확대를 방지한다. 1000[kVA]이하의 간이 수전설비의 인입개폐기로 설치하도록 의무화 하고 있다.

4 선로개폐기(LS : Line Switch)

책임 분계점에 보수 점검시 전로를 개폐하기 위하여 사용하는 것으로 반드 시 무부하(무전압) 상태에서 사용한다. 66[kV]이상의 경우에 사용한다.

수변전설비 자동제어기구 번호

기구 번호	약호	보조 번호	계전기 명칭		
27	UVR		교류 부족전압 계전기		
37	UCR		부족전류계전기		
		37A	교류 부족전류 계전기		
		37D	직류 부족전류 계전기		
49	THR		회전기 온도계전기		
50	GR		단락선택 또는 지락선택 계전기		
		50G	지락선택 계전기		
51			교류 과전류 계전기		
	OCR	51G	지락 과전류 계전기		
		51N	중성점 과전류 계전기		
		51V	전압 억제부 교류 과전류 계전기		
52	СВ		교류 차단기		
59	OVR		교류 과전압 계전기		
64	OVGR		지락 과전압 계전기		
67	DGR		지락방향 계전기		
87	DCR		전류 차동 계전기		
		87-B	모선보호 차동 계전기		
		87-G	발전기용 차동 계전기		
		87-T	주변압기 차동 계전기		

♣ 출제 Point

이해하기

수변전설비에서 사용되는 100여 개의 자동 제어기구 번호에서 중 요한 기구번호를 숙지한다.

아기하기

보호계전기의 특성

- 선택성
- 신뢰성
- 감도
- 속도

이해하기

모선:BUS 발전기: Generator 변압기: Transformer

수변전설비 주요계측기

명칭	심벌		원어	역할
전력량계	WH		Watt Hour meter	수용가의 사용전력량 측정
최대수요전력계	(DM)	MDW	Demand Wattmeter	수용가의 최대전력 측정
무효전력량계	VARH		Var meter Watt Hour	수용가 설비의 무효전력 측정
주파수계	F		Frequency meter	수용가 설비의 주파수 측정
역률계	PF		Power factor meter	수용가 설비의 역률측정

아기하기

한시계전기의 종류

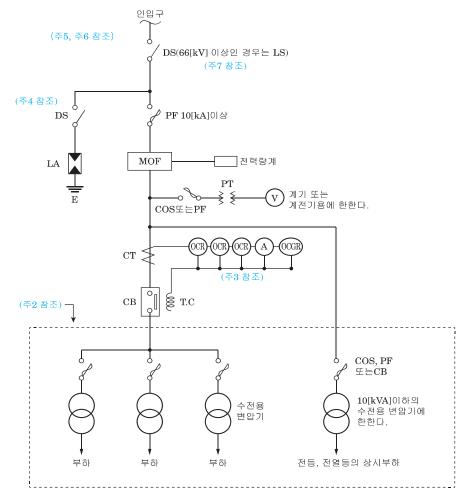
- 순한시 계전기
- 정한시 계전기
- 반한시 계전기
- 반한시 정한시 계전기
- 순시 비례한시 계전기
- 계단한시 계전기

출제 Point

암기하기

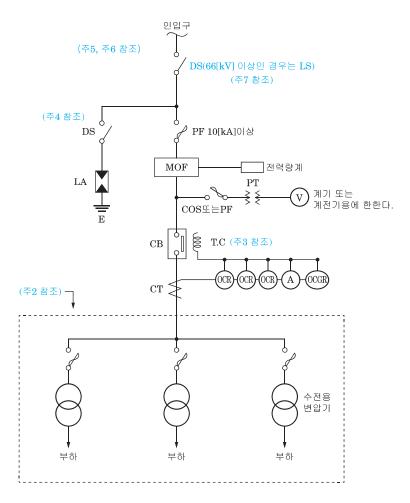
차단기 트립방식의 종류

- 직류전원(DC) 트립방식
- 콘덴서트립방식(CTD)
- 전류트립방식(OCT)
- 부족전압트립방식(UVT)


암기하기

케이블의 명칭

- CV : 가교 폴리에틸렌 절연 비 닐시스 케이블
- CNCV: 동심중성선 차수형 전 력 케이블
- CNCV-W : 동심중성선 수밀형 전력 케이블
- TR CNCV-W : 동심중성선 수 밀형 트리억제형 전력케이블
- FR CNCO-W: 동심중성선 수밀 형 저독성 • 난연성 전력케이블


특별고압 수전설비 표준도면

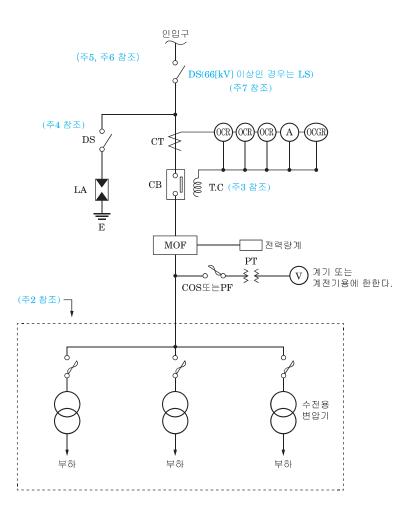
1 CB 1차측에 CT와 PT를 시설하는 경우

- (주 1) 22.9[kV-Y] 1000[kVA] 이하인 경우는 그림 4에 의할 수 있다.
- (주 2) 결선도중 점선내의 부분은 참고용 예시이다.
- (주 3) 차단기의 트립 전원은 직류(DC) 또는 콘덴서방식(CTD)이 바람직하며, 66[kV] 이상의 수전설비는 직류(DC)이어야 한다.
- (주 4) LA용 DS는 생략할 수 있으며, 22.9[kV-Y]용의 LA는 Disconnector(또는 Isolator) 붙임 형을 사용하여야 한다.
- 인입선을 지중선으로 시설하는 경우에 공동주택 등 고장 시 정전피해가 큰 경우는 예비 (주 5) 지중선을 포함하여 2회선으로 시설하는 것이 바람직하다.
- 지중 인입선의 경우에 22.9[kV-Y] 계통은 CNCV-W 케이블(수밀형) 또는 TR CNCV-W (주 6) (트리억제형)을 사용하여야 한다. 다만, 전력구·공동구·덕트·건물구내 등 화재의 우려가 있는 장소에서는 FR CNCO-W(난연)케이블을 사용하는 것이 바람직하다.
- (주 7) DS 대신 자동 고장 구분 개폐기(7000[kVA] 초과시는 Sectionalizer)를 사용할 수 있으 며, 66[kV] 이상의 경우는 LS를 사용하여야 한다.

2 CB 1차측에 PT를 CB 2차측에 CT를 시설하는 경우

- (주 1) 22.9[kV-Y] 1000[kVA] 이하인 경우는 그림 4에 의할 수 있다.
- (주 2) 결선도중 점선내의 부분은 참고용 예시이다.
- (주 3) 차단기의 트립 전원은 직류(DC) 또는 콘덴서방식(CTD)이 바람직하며, 66[kV] 이상의 수전설비는 직류(DC)이어야 한다.
- LA용 DS는 생략할 수 있으며, 22.9[kV-Y]용의 LA는 Disconnector(또는 Isolator) 붙임 (주 4) 형을 사용하여야 한다.
- 인입선을 지중선으로 시설하는 경우에 공동주택 등 고장 시 정전피해가 큰 경우는 예비 (주 5) 지중선을 포함하여 2회선으로 시설하는 것이 바람직하다.
- (주 6) 지중 인입선의 경우에 22.9[kV-Y] 계통은 CNCV-W 케이블(수밀형) 또는 TR CNCV-W (트리억제형)을 사용하여야 한다. 다만, 전력구·공동구·덕트·건물구내 등 화재의 우려가 있는 장소에서는 FR CNCO-W(난연)케이블을 사용하는 것이 바람직하다.
- DS 대신 자동 고장 구분 개폐기(7000[kVA] 초과시는 Sectionalizer)를 사용할 수 있으 며, 66[kV] 이상의 경우는 LS를 사용하여야 한다.

이해하기

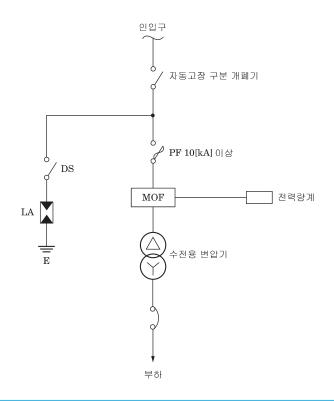

트리현상이란 고체절연물 내에 코 로나 방전에 의한 절연열화 현상 으로 나무모양의 흔적을 남기며 케이블 열화의 원인이 된다. 트리 현상으로 전기트리, 수트리, 화학 적 트리로 구분할 수 있다.

D 이해하기

단로장치

피뢰기의 고장시 계통은 지락사고 등의 고장상태가 될 수 있다. 피뢰 기의 접지측을 대지로부터 분리시키 는 장치를 단로장치(Disconnector 또는 Isolator)라 한다.

3 CB 1차측에 CT를 CB 2차측에 PT를 시설하는 경우



이해하기

보호범위를 넓히기 위해서 계기용 변류기는 차단기의 전원측에 설치 하는 것이 바람직하다. CB 2차측 에 PT를 시설하는 경우 MOF 전단 에 차단기가 시설되므로 PF가 필 요없다.

- (주 1) 22.9[kV-Y] 1000[kVA] 이하인 경우는 그림 4에 의할 수 있다.
- (주 2) 결선도중 점선내의 부분은 참고용 예시이다.
- 차단기의 트립 전원은 직류(DC) 또는 콘덴서방식(CTD)이 바람직하며, 66[kV] 이상의 (주 3) 수전설비는 직류(DC)이어야 한다.
- LA용 DS는 생략할 수 있으며, 22.9[kV-Y]용의 LA는 Disconnector(또는 Isolator) 붙임 (주 4) 형을 사용하여야 한다.
- (주 5) 인입선을 지중선으로 시설하는 경우에 공동주택 등 고장 시 정전피해가 큰 경우는 예비 지중선을 포함하여 2회선으로 시설하는 것이 바람직하다.
- 지중 인입선의 경우에 22.9[kV-Y] 계통은 CNCV-W 케이블(수밀형) 또는 TR CNCV-W (주 6) (트리억제형)을 사용하여야 한다. 다만, 전력구·공동구·덕트·건물구내 등 화재의 우려가 있는 장소에서는 FR CNCO-W(난연)케이블을 사용하는 것이 바람직하다.
- DS 대신 자동 고장 구분 개폐기(7000[kVA] 초과시는 Sectionalizer)를 사용할 수 있으 며, 66[kV] 이상의 경우는 LS를 사용하여야 한다.

◀ 특별고압 간이수전설비 결선도 22.9[kV-Y] 1.000[kVA] 이하

- LA용 DS는 생략할 수 있으며 22.9[kV-Y]용의 LA는 Disconnector (또는 Isolator) (주 1) 붙임형을 사용하여야 한다.
- 인입선을 지중선으로 시설하는 경우로 공동주택 등 고장시 정전피해가 큰 경우 (주 2) 는 예비 지중선을 포함하여 2회선으로 시설하는 것이 바람직하다.
- 지중 인입선의 경우에 22.9[kV-Y] 계통은 CNCV-W 케이블(수밀형) 또는 TR CNCV-W (주 3) (트리억제형)을 사용하여야 한다. 다만, 전력구·공동구·덕트·건물구내 등 화재의 우려가 있는 장소에서는 FR CNCO-W(난연)케이블을 사용하는 것이 바람직하다.
- (주 4) 300[kVA] 이하인 경우는 PF대신 COS(비대칭 차단전류 10[kA] 이상의 것)을 사 용할 수 있다.
- 특별고압 간이수전설비는 PF의 용단 등의 결상사고에 대한 대책이 없으므로 변압 (주 5) 기 2차 측에 설치되는 주차단기에는 결상계전기 등을 설치하여 결상사고에 대한 보 호능력이 있도록 함이 바람직하다.

|참고|

결상보호란 다상 회로의 1상의 도체에 전류가 없어졌을 때에 목적 장치를 절리 하도록 동작하 거나 혹은 다상 회로의 하나 또는 그 이상의 상전압이 없어졌을 때에 목적 장치에 대한 전력공 급을 저지하도록 하는 보호방법을 이른다. 이와 같은 결상 사고로 인하여 동작하는 계전기를 결상 계전기라고 한다.

이해하기

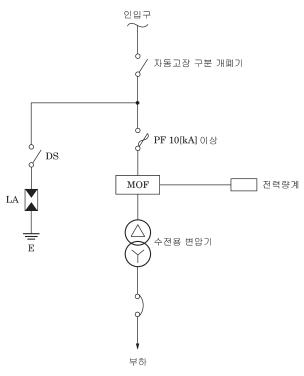
자동고장 구분 개폐기는 공급신뢰 도 향상, 사고파급을 방지하기 위 하여 간이수전설비의 인입개폐기 로 사용한다.

이해하기

우리나라의 배전방식은 3상 4선 식 다중접지 방식이며 지락사고시 중성선에 흐르는 지락전류가 단락 전류보다 클 수도 있다.

이해하기

자동고장 구분 개폐기(ASS)는 지 락사고를 변전소의 차단기와 배 전선로에 설치된 리클로저와 협 조하여 사고구간을 자동 분리하 고 그 사고의 파급확대를 방지하 기 위하여 사용되는 개폐기이다. 공급변전소의 차단기와 리클로저 와 협조하여 사고발생시 고장구 간을 자동으로 분리한다.


앙기하기

특별고압 간이수전설비에서 300 [kVA] 이하일 경우 인입용개폐기 로 사용하는 ASS 대신 인터럽터 스위치를 사용할 수 있다.

수변전 01

필수문제

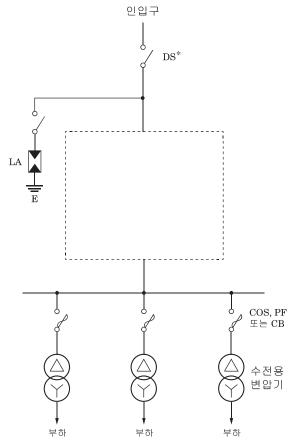
그림은 22.9[kV-Y] 1000[kVA] 이하에 적용 가능한 특고압 간이 수전설비 결선도이다. 각 물음에 답하시오.

- (1) 위 결선도에서 생략할 수 있는 것은?
- (2) 22.9[kV-Y]용의 LA는 어떤 것을 사용하여야 하는가?
- (3) 인입선을 지중선으로 시설하는 경우로 공동주택 등 고장시 정전피해가 큰 경 우에는 예비 지중선을 포함하여 몇 회선으로 시설하는 것이 바람직한가?
- (4) 지중인입선의 경우에 22.9[kV-Y] 계통은 CNCV-W 케이블(수밀형) 또는 TR CNCV-W(트리억제형)을 사용하여야 한다. 다만, 전력구·공동구·덕트 ·건물구내 등 화재의 우려가 있는 장소에서는 어떤 케이블을 사용하는 것 이 바람직한가?
- (5) 300[kVA] 이하인 경우는 PF 대신 어떤 것을 사용할 수 있는가?

암기하기

케이블의 명칭

- CV : 가교 폴리에틸렌 절연 비 닐시스 케이블
- CNCV : 동심중성선 차수형 전 력 케이블
- CNCV-W : 동심중성선 수밀형 전력 케이블
- TR CNCV-W : 동심중성선 수 밀형 트리억제형 전력케이블
- FR CNCO-W : 동심중성선 수밀 형 저독성 · 난연성 전력케이블


정답

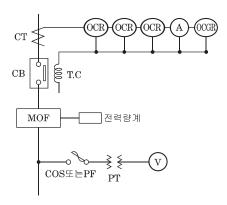
- (1) LA용 DS
- (3) 2회선
- (5) COS
- (2) Disconnector 또는 Isolator 붙임형
- (4) FR CNCO-W(난연) 케이블

수변전 02

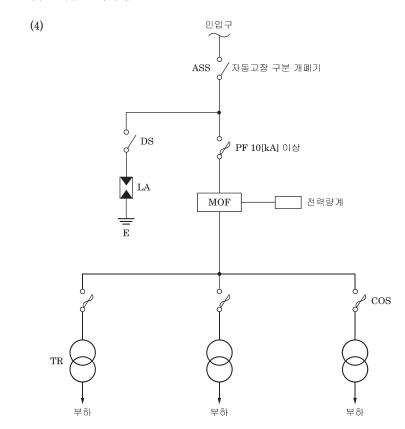
필수문제

그림은 특고압 수전설비 결선도의 미완성 도면이다. 이 도면을 보고 다음 각 물음에 답하시오. (단 CB 1차측에 CT를, CB 2차측에 PT를 시설하는 경우이다.)

- (1) 미완성 부분(점선 내부 부분)에 대한 결선도를 그리시오. (단, 미완성 부분 만 작성하되 미완성 부분에는 CB, OCR : 3개, OCGR, MOF, PT, CT, PF, COS, TC, A, V, 전력량계 등을 사용하도록 한다.)
- (2) 사용전압이 22.9[kV]라고 할 때 차단기의 트립전원은 어떤 방식이 바람직 한지 2가지를 쓰시오.
- (3) 수전전압이 66[kV]이상인 경우 *표로 표시된 DS 대신 어떤 것을 사용하 여야 하는가?
- (4) 22.9[kV-Y] 1000[kVA] 이하를 시설하는 경우 특고압 간이수전설비 결선 도에 의할 수 있다. 본 결선도에 대한 간이수전설비 결선도를 그리시오.


알기하기

특고압 수전설비


차단기의 트립 전원은 직류(DC) 또는 콘덴서 방식(CTD)이 바람직 하며, 66[kV]이상의 수전설비는 직류(DC)이어야 한다.

정답

(1)

- (2) ① 직류(DC) 방식 ② 콘덴서 방식(CTD)
- (3) LS(선로 개폐기)

